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A baffling aspect of metazoan pro-
teostasis is the lack of an Hsp104 

ortholog that rapidly disaggregates 
and reactivates misfolded polypeptides 
trapped in stress induced disordered 
aggregates, preamyloid oligomers, or 
amyloid fibrils. By contrast, in bacteria, 
protozoa, chromista, fungi, and plants, 
Hsp104 orthologs are highly conserved 
and confer huge selective advantages in 
stress tolerance. Moreover, in fungi, the 
amyloid remodeling activity of Hsp104 
has enabled deployment of prions for 
various beneficial modalities. Thus, a 
longstanding conundrum has remained 
unanswered: how do metazoan cells 
renature aggregated proteins or resolve 
amyloid fibrils without Hsp104? Here, 
we highlight recent advances that unveil 
the metazoan protein-disaggregase 
machinery, comprising Hsp110, Hsp70, 
and Hsp40, which synergize to dissolve 
disordered aggregates, but are unable to 
rapidly solubilize stable amyloid fibrils. 
However, Hsp110, Hsp70, and Hsp40 
exploit the slow monomer exchange 
dynamics of amyloid, and can slowly 
depolymerize amyloid fibrils from their 
ends in a manner that is stimulated by 
small heat shock proteins. Upregulation 
of this system could have key therapeutic 
applications in various protein-misfold-
ing disorders. Intriguingly, yeast Hsp104 
can interface with metazoan Hsp110, 
Hsp70, and Hsp40 to rapidly eliminate 
disease associated amyloid. Thus, meta-
zoan proteostasis is receptive to augmen-
tation with exogenous disaggregases, 
which opens a number of therapeutic 
opportunities.

Introduction

Controlling the “quality” of proteins 
beyond translation is key in assuring cor-
rect cellular functioning and preserving 
organismal health.1 For a nascent poly-
peptide chain, folding into the correct 
native structure and maintaining the cor-
rect native form is challenging within the 
crowded environment of a cell.2-4 Thus, 
proteins occasionally assume defective, 
nonfunctional conformations. To cir-
cumvent this fundamental problem of cell 
biology, nature has devised several mecha-
nisms to prevent or resolve protein mis-
folding in the cell. For instance, molecular 
chaperones block protein aggregation and 
actively help proteins reach their native 
conformations.5 If a protein has been 
damaged beyond repair, it can be cleared 
by specialized degradation systems.6-8 
Alas, protein misfolding and aggregation 
can overcome these systems, especially 
upon environmental stress, which can 
even elicit aging and disease.9 Indeed, 
protein misfolding underpins several 
devastating neurodegenerative diseases, 
including Alzheimer disease, Parkinson 
disease, Creutzfeldt-Jakob disease, and 
Huntington’s disease.10,11

In the 1990s, Susan Lindquist and 
coworkers unequivocally defined a new 
branch in protein quality control: protein 
disaggregation coupled to protein reactiva-
tion.12-14 Although it had been speculated 
that protein disaggregation and reactiva-
tion might occur,15 it had never been con-
vincingly demonstrated. Lindquist and 
colleagues discovered a new heat shock 
protein (Hsp) in Saccharomyces cerevisiae, 
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Hsp104, which was found to have a key 
role in allowing cells to survive severe stress 
after heat treatment (thermotolerance).14 
In subsequent investigations, Hsp104 was 
found to solubilize large protein aggre-
gates resulting from severe heat stress and 
recover enzymatically active proteins from 
these aggregates.12 Accordingly, yeast cells 
lacking Hsp104 were no longer able to 
rapidly solubilize and reactivate proteins 
from an aggregated state following ther-
mal stress.13,16

Since then, we have learned much 
about the way Hsp104 functions. Hsp104 
is a ring-shaped homohexamer with 
two AAA+ nucleotide-binding domains 
(NBDs) per subunit that couple ATP 
binding and hydrolysis to protein disag-
gregation.17-22 Hsp104 is thought to drive 
protein disaggregation by threading sub-
strates through its central channel to solu-
tion.23-26 Hsp104 disaggregates a diverse 
array of structures, ranging from stable 
amyloid to less stable disordered aggre-
gates.12,13,27-33 Hsp104 hexamers adapt 
different mechanisms of intersubunit col-
laboration to disaggregate stress-induced 
aggregates vs. amyloid.27,34 Hsp104 acts 
alone or in concert with other molecular 
chaperones to rescue aggregated polypep-
tides.12,20,28,32,34-36 In particular, Hsp70, 
Hsp40, and small heat shock proteins 
(Hsp26 and Hsp42) can synergize with 
Hsp104 to promote the reactivation of 
protein aggregates.35,37,38 Hsp104 is also 
essential for the formation and propaga-
tion of several yeast prions; protein-based 
genetic elements comprised of amyloid 
fibers that can confer advantageous self-
perpetuating changes in protein structure 
and function.32,39-46

Hsp104 is highly conserved in eubacte-
ria and eukaryotes. Inexplicably, however, 
Hsp104 has no exact homolog or ortholog 
in metazoa.47 NBD2, but not other parts of 
Hsp104, appears to be partially conserved 
in the four ER-resident AAA+ proteins: 
torsin A, B, 2A, and 3A, as well as the 
mitochondrial AAA+ protein, SKD3.48-50 
This deficiency of Hsp104 in animals is 
puzzling, as a protein that reverses protein 
aggregation and restores protein function 
would be pivotal in combating aberrant 
protein aggregation.17,47 The reason under-
lying the loss of Hsp104 is unknown, and 
is even more baffling because Hsp104 is 

well tolerated and even neuroprotective 
in animal systems.30,51-55 For example, 
Hsp104 rescues α-synuclein aggregation 
and dopaminergic neurodegeneration in a 
rat model of Parkinson disease.30 Whether 
mammals boast an equivalent protein 
disaggregase has endured as a persistent 
unanswered question.

Hsp110, Hsp70, and Hsp40 as 
a novel protein disaggregase 

system

We have recently shed some light on 
this issue and have identified the mamma-
lian disaggregase system via biochemical 
fractionation of mammalian cytosol and 
reconstitution with pure components.56 
The mammalian disaggregase system 
is comprised of an Hsp110 (Apg-2), an 
Hsp70 (Hsc70 or Hsp70), and an Hsp40 
(Hdj1 or Hdj2).56 The combination of 
these three proteins was found to establish 
an active disaggregase system in the mam-
malian cytosol prepared from rat liver or 
sHeLa cells.56 Hsp110, Hsp70, and Hsp40 
were able to refold proteins from large 
chemically or thermally denatured pro-
tein aggregates.56 Using pure proteins, we 
established that Hsp70 and Hsp40 alone 
are not sufficient for robust disaggregase 
activity, but must be supplemented with 
Hsp110.56 Hsp110 homologs are found 
in all eukaryotes and contribute toward 
thermotolerance in mammalian cells.57,58 
Hsp110 can serve as a nucleotide exchange 
factor (NEF) for Hsp70 but also displays 
chaperone activity.59-64 We established that 
Hsp110-Hsp70-Hsp40 disaggregase activ-
ity was most effective against disordered, 
amorphous aggregates.56 Indeed, Hsp110, 
Hsp70 and Hsp40 were unable to rap-
idly disaggregate Sup35 prions or amy-
loid forms of α-synuclein.56 Disaggregase 
activity was conserved to the yeast homo-
logs.56 Thus, Sse1 (Hsp110), Ssa1 (Hsp70), 
and Sis1 or Ydj1 (Hsp40) could synergize 
to rescue proteins from large disordered 
aggregates.56 This activity was slow in 
comparison to Hsp104- catalyzed protein 
disaggregation, which might help explain 
why minimal disaggregase activity is 
observed in yeast lacking Hsp104 imme-
diately after heat shock.13 In yeast, Sse1 
contributes to prion propagation65-67 and 
might also be involved in the dissolution 

of ‘Q-bodies’ or ‘stress foci’: punctate 
cytoplasmic structures where misfolded 
proteins are collected prior to maturation 
into larger inclusions.68-70 Using a series of 
Sse1 mutants,61 we determined that Sse1 
must engage both substrate and Hsp70, 
promote nucleotide exchange on Hsp70, 
and bind and hydrolyze ATP itself to pro-
mote disaggregation of disordered aggre-
gates. Thus, simply providing Hsp70 
with a NEF, such as Fes1 or Snl1ΔN, in 
place of Sse1 was insufficient to promote 
protein disaggregation.56 Likewise, using 
a series of Ssa1 mutants, we determined 
that Hsp70 must engage substrate and 
Hsp110, and hydrolyze ATP for protein 
disaggregation.56 Hsp40 must harbor a 
functional J domain to promote protein 
disaggregation, but the J domain alone 
is insufficient.56 Optimal disaggregase 
activity was achieved when the Hsp40 
could stimulate Hsp110 and Hsp70 
ATPase activity.56 Finally, while Hsp110, 
Hsp70 and Hsp40 were unable to rap-
idly resolve amyloid conformers directly, 
they enhanced disaggregation of Sup35 
prions and α-synuclein amyloid fibrils by 
Hsp104.56

About a year later, a subsequent study 
confirmed the metazoan disaggregation 
activity exerted by Hsp110 (Apg-1, Apg-
2, or Hsp105), Hsp70 (Hsc70 or Hsp70), 
and Hsp40 (Hdj1 or DNAJA2) in vitro.71 
Curiously, under the in vitro conditions 
employed the ATPase activity of Hsp110 
was not required to promote protein dis-
aggregation.71 Hsp110 appeared to con-
tribute primarily by acting as a nucleotide 
exchange factor (NEF) for Hsp70. Mild 
aggregation conditions were even estab-
lished where Hsc70 and the alternative 
Hsp40, DNAJA2, could disaggregate sub-
strates if provided with the Hsp70 NEFs 
Bag-1 or Snl1ΔN instead of Hsp110.71 
Under these circumstances, stimulation 
of Hsp70 nucleotide exchange was suffi-
cient for disaggregation.71

Using C. elegans as a model system, 
knockdown of Hsp110 in briefly heat-
shocked C. elegans resulted in persistent 
luciferase-YFP aggregates and a dras-
tically reduced lifespan.71 The persis-
tence of protein aggregates and lifespan 
reduction could reflect a requirement for 
Hsp110 in the solubilization of protein 
aggregates in vivo.71
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Alternatively, it might point to a role 
for Hsp110 in the inhibition of ongo-
ing aggregation after the transient heat 
shock. Unfortunately, the experiments 
performed could not differentiate between 
these two possibilities, as the expression of 
luciferase-YFP was not shut down after the 
transient heat shock. Thus, it is unclear 
whether the persistence of luciferase-YFP 
aggregates reflects a failure to disaggregate 
pre-existing luciferase-YFP or whether 
newly synthesized luciferase-YFP contin-
ued to aggregate after the transient heat 
shock (perhaps due to seeding by pre-
formed aggregates).

Originally, to convincingly establish 
the disaggregase activity of Hsp104 in 
vivo, it was necessary to stringently shut 
down protein synthesis using cyclohexi-
mide immediately after the heat shock.13 
In this way, one could be absolutely certain 
that any protein reactivation that occurred 
was due to recovery of previously aggre-
gated protein and not due to the accu-
mulation of newly synthesized material.13 
A similar strategy has been employed to 
demonstrate that Hsp104 can solubilize 
amyloid in vivo.29 Thus, in the study by 
Rampelt et al. one cannot be certain what 
proportion of the soluble luciferase- YFP 
observed in wild-type C. elegans after a 
12h or 24h recovery from heat shock rep-
resents newly synthesized protein or bona 
fide resolubilized protein.71 A similar issue 
arises in more recent experiments that also 
aimed to demonstrate in vivo disaggre-
gase activity of Hsp110 using Drosophila 
S2 cells, but again the critical cyclohexi-
mide control was also omitted.72 As such, 
although the foregoing experiments pro-
vide compelling indications,71,72 we still 
await an unequivocal in vivo demonstra-
tion of Hsp110, Hsp70, and Hsp40 disag-
gregase activity.

More recently, Goloubinoff and col-
leagues corroborated that the cytosol and 
the endoplasmic reticulum of mammalian 
cells contain Hsp110 and Hsp70 machin-
eries that can unfold and solubilize sta-
bly misfolded and aggregated protein.62 
Outstandingly, Hsp110 (Hsp105) was 
found to be an ATP-dependent unfoldase 
that can prevent aggregation, catalyze the 
unfolding of misfolded polypeptides, and 
favor their conversion into native protein 
on its own.62 Thus, Hsp110 can act as a 

bona fide chaperone with unfolding activ-
ity, and does not simply serve as a NEF 
for Hsp70.62 Furthermore, titration of the 
ATP- and Hsp40-dependent refolding 
activity in the presence of various amounts 
of Hsp110 and Hsp70 showed optimal dis-
aggregation activity at a 1:1 ratio.62

Intriguingly, even without ATP, 
Hsp110 promotes the release of a pre-
bound substrate from Hsp70, and Hsp70 
could activate the release of a prebound 
substrate from Hsp110.62 Together with 
our study,56 these findings conflict with 
the notion that the only function for 
Hsp110 in protein disaggregation is as a 
NEF for Hsp70.62 Indeed, it should also be 
noted that several key in vivo functions of 
Sse1 require its ATPase activity.73,74

Collectively, these results from three 
different groups independently corrobo-
rate the existence of a disaggregase system, 
consisting of Hsp110, Hsp70, and Hsp40, 
that couple protein disaggregation to 
protein renaturation in metazoa (Fig. 1). 
Discrepancies in the details of the system 

regarding the requirement for Hsp110 
ATPase activity in disaggregation and the 
relative level of activity of the system are 
likely the result of different experimental 
conditions. For instance, we used equal 
concentrations of Hsp70 and Hsp110,56 
while Rampelt and colleagues used a 1:10 
ratio of Hsp110 to Hsp70.71 Analogously 
to our work, Goloubinoff and coworkers 
identified an optimal 1:1 ratio for the con-
centrations of Hsp110 and Hsp70, which 
might even suggest an Hsp110:Hsp70 
heterodimer that co-operatively drives 
disaggregation via synergistic entropic 
pulling.56,62,75-77 Indeed, Sse1 has been co-
crystallized in 1:1 complex with the Hsc70 
nucleotide-binding domain, suggesting 
that a 1:1 complex could be critical.78

Moreover, Ssa1 and Sse1 display high 
affinity for different peptides,79 indicating 
that they might interact and exert force 
on different regions of the polypeptide 
to cooperatively drive disaggregation. In 
each of these studies,56,62,71 different con-
ditions were used to generate the protein 

Figure 1. Hsp110, Hsp70, Hsp40, and sHsps are a disaggregation system in metazoan cells. Heat 
shock proteins Hsp110, Hsp70, and Hsp40 are capable of dissolving disordered aggregates. For 
labile aggregates, Hsp110 may only need to operate as a nucleotide exchange factor (NEF) for 
Hsp70, whereas for more stable aggregates it may need to serve as a NEF for Hsp70, engage sub-
strate, and bind and hydrolyze atP. Hsp110, Hsp70, and Hsp40 can also slowly depolymerize ordered 
amyloid substrates from their ends. rapid amyloid dissolution can be achieved by supplementing 
Hsp110, Hsp70 and Hsp40 with exogenous Hsp104. Here, fibrils can be fragmented and monomers 
extracted from anywhere in the fibril (not just the ends), which leads to more rapid dissolution. 
sHsps can stimulate all of these protein disaggregation reactions, but are not absolutely required.
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aggregates studied. For instance, in our 
study, more severe chemical or thermal 
denaturation was used to generate aggre-
gates.56 Hence, it is highly probable that 
different aggregated conformers were 
studied in each case. We suggest that pro-
teins can adopt a wide variety of confor-
mations in the aggregated state, some of 
which are more labile and do not require 
the full chaperone repertoire of Hsp110 
for disaggregation (NEF activity is suf-
ficient), whereas others are more recalci-
trant and require the full complement of 
Hsp110 activities encompassing: substrate 
binding, Hsp70 binding, promotion of 
nucleotide exchange on Hsp70, and ATP 
binding and hydrolysis. Additional stud-
ies are required to explore this hypoth-
esis further. However, the Hsp70 NEF, 
Snl1ΔN, could not substitute for Hsp110 
under our more stringent aggregation 
conditions,56 whereas it could under 
much milder aggregation conditions.71 
An interesting parallel may be drawn with 
Hsp104, which employs distinct mecha-
nisms to dissolve labile aggregates vs. 
stable amyloid.27 Hsp104 subunits within 
the hexamer can function independently 
to resolve disordered aggregates.27 Thus, 
even a single subunit within the hexamer 
can drive disaggregation of disordered 
aggregates.27 By contrast, multiple Hsp104 
subunits must work together within the 
hexamer in a co-operative manner to 
drive amyloid dissolution.27 Some very 
stable amyloid conformations even require 
direct co-operation between two Hsp104 
hexamers.27,56 By analogy, the Hsp110-
Hsp70-Hsp40 system might also exhibit 
mechanistic plasticity in protein disaggre-
gation. We suggest that more stable aggre-
gated structures might necessitate the full 
repertoire of Hsp110 modalities, whereas 
the NEF activity might suffice for more 
facile conformers.

Amyloid Disaggregation in 
Metazoa

In addition to amorphous aggregates, 
misfolded proteins in the cell can form 
amyloids and prions.10,80,81 Amyloids are 
self-templating protein conformers.10,80,81 
They form long, stable fibers by self-
replicating their ‘cross-β’ conformation 
at their growing ends and by converting 

other copies of the same protein to the 
‘cross-β’ amyloid form.10,80,81 When amy-
loid fibers become infectious, they are 
termed prions.10,80,81 Initially, we found 
Hsp110, Hsp70 and Hsp40 were unable 
to rapidly remodel amyloid in the absence 
of Hsp104.56 However, in a later study, 
we found Hsp110, Hsp70 and Hsp40 
especially in conjunction with small heat 
shock proteins (sHsps), can very slowly 
depolymerize amyloid fibers (Sup35 pri-
ons or α-synuclein fibrils) from their 
ends,35 providing a pathway for amy-
loid disaggregation in metazoans in the 
absence of Hsp104. Amyloid depolymer-
ization is a lengthy process that occurs on 
a similar timeframe to molecular recycling 
within amyloid fibers (days).35,82,83 The 
disaggregase system involving Hsp110, 
Hsp70, Hsp40, and sHsps might exploit 
this process to slowly eliminate amyloid 
by accelerating monomer dissociation or 
by capturing released monomers or by 
sealing off fibril ends once a monomer has 
been released thereby preventing mono-
mer reassociation.35 While newly released 
monomers could hypothetically collect 
into toxic oligomers, the chaperone sys-
tem would likely prevent any toxic oligo-
mer formation. Remarkably, we found 
this activity to be conserved in humans.35 
Thus, Hsp110 (Apg-2), Hsp70 (Hsc70), 
Hsp40 (Hdj1) and a small heat shock 
protein (HspB5) slowly depolymerized 
α-synuclein fibrils, which are connected 
to Parkinson disease.19 These data suggest 
that in metazoa, which lack an Hsp104 
homolog, Hsp110, Hsp70, and Hsp40 can 
slowly eliminate amyloid forms by spe-
cifically hijacking their intrinsic monomer 
recycling process.35,82,83

Treating Neurodegenerative 
Disease: Can we give Hsp110 a 

boost?

The Hsp110-Hsp70-Hsp40 disaggre-
gase system might prove to be an advan-
tageous therapeutic target against the 
numerous neurological disorders con-
nected to protein misfolding and aggre-
gation.10 Indeed, co-expression of Hsp110 
and Hsp40 in Drosophila melanogaster 
suppresses the cytotoxicity of polyglu-
tamine aggregation.84 Importantly, the 
ATPase activity of Hsp110 was critical for 

this rescue.84 A feasible explanation for this 
effect invokes Hsp110 and Hsp40 interfac-
ing with members of the Hsp70 family to 
disassemble polyglutamine aggregates and 
thus reduce the cellular toxicity of protein 
aggregation. Polyglutamine aggregation 
is connected to several neurodegenerative 
diseases, including Huntington’s disease 
and Spinocerebellar Ataxias.85 Similarly, 
Hsp110 was found to completely reverse 
a vesicle transport defect produced by a 
mutant (G85R) of Superoxide Dismutase 
1 (SOD1) associated with amyotrophic 
lateral sclerosis (ALS) in the isolated axo-
plasm from the giant axon of the squid 
Loligo pealei.86 Hsp110 appears to either 
directly bind to the mutant SOD1, or 
to associate with the mutant protein via 
Hsp70, and occlude binding surfaces that 
would otherwise interact with endog-
enous proteins leading to a gain of toxic 
function. Further studies are warranted 
to determine whether Hsp110, Hsp70, 
and Hsp40 can also disaggregate mis-
folded SOD1 conformers connected to 
ALS or polyglutamine fibrils and oligo-
mers connected to Huntington’s disease 
and Spinocerebellar Ataxias. Treatment 
of several neurodegenerative disorders 
could entail the activation of the Hsp110-
Hsp70-Hsp40 disaggregase system. As 
Hsp110, Hsp70 and Hsp40 enhanced 
amyloid remodeling by Hsp104,56 one 
alternative possibility to achieve such acti-
vation would be to supplement metazoan 
cells with Hsp104.47 For instance, Hsp104 
prevented the aggregation and toxicity of 
polyglutamine in C. elegans.54 In mouse 
and rat, Hsp104 expression resulted in 
extension the animal’s lifespan and res-
cue of striatal dysfunction respectively.53,55 
We have recently introduced Hsp104 
into Drosophila models of Spinocerebellar 
Ataxia Type-3.51 Notably, Hsp104 sup-
pressed toxicity of a C-terminal ataxin-3 
fragment when expressed even after the 
onset of polyglutamine-induced degen-
eration.51 This constitutes the first dis-
aggregase treatment that halts disease 
progression after the start of pathogenic 
degeneration.51 Notably, induction of 
Hsp70 after polyglutamine-mediated 
degeneration had already initiated was 
unable to significantly mitigate disease 
progression.51 It is possible that simultane-
ous induction of not only Hsp70, but also 
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Hsp110 and Hsp40 is necessary to achieve 
toxicity suppression after degeneration 
and aggregation have initiated.84

Another possibility to enhance clear-
ance of harmful amyloids would be to 
boost sHsp levels or activity to facilitate 
the action of endogenous human Hsp110, 
Hsp70, and Hsp40. Thus, small mol-
ecules that induce the expression of these 
proteins without compromising other 
components of the stress response could 
be critical.11,87,88 For example, the ability 
to stimulate the dissolution of α-synuclein 
fibers in patients with Parkinson disease 
might provide an unprecedented thera-
peutic leap in the treatment of this disease. 
Although released monomers could theo-
retically reassemble into toxic oligomers, 
the proteostasis network would likely pre-
vent this situation. Lastly, direct pharma-
cological activation of Hsp110 or Hsp70 
is another attractive possibility.89 While 

pharmaceutical discovery efforts generally 
focus on protein inhibition, protein acti-
vation is an emerging field.90

In conclusion, the metazoan disag-
gregase machinery is comprised of the 
heat shock proteins Hsp110, Hsp70, and 
Hsp40, which dissolve disordered aggre-
gates.56,62,71 Hsp110, Hsp70, and Hsp40 
exploit the exchange dynamics of amy-
loid, and can slowly depolymerize amyloid 
fibrils from their ends.35 This amyloid 
depolymerase activity as well as the dis-
aggregation of disordered aggregates is 
stimulated by sHsps.35,71 Augmentation 
of this disaggregase network could have 
key applications in various neurological 
disorders linked to protein misfolding. 
Fascinatingly, this metazoan disaggrega-
tion network is amenable to augmenta-
tion with exogenous disaggregases, which 
opens several exciting avenues for poten-
tial treatments.47
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